Digital Twins for Yield
Analyzing Manufacturing Sensor and Process Data at Scale

On Demand Webinar

Digital twins are virtual representations of physical systems. The current interest in them is fueled by the convergence of IoT, machine learning and big data technology. As process complexity increases, they are becoming key to efficient operations and high product yields.

There is now a demand for ‘wide-and-big data’ analytic solutions that detect associations between product quality metrics and thousands to millions of process variables. These cutting edge solutions can support root-cause and predictive analyses. Further, the results must be available close to "real-time" to enable useful process interventions — for example to identify subtle equipment changes, process shift or drift, or to predict and remedy substandard yield for a lot in the line.

This webinar focuses on the implementation of a semiconductor manufacturing digital twin for yield that detects associations between product quality metrics and up to millions of predictor process.

What you will see via demos and learn about:

  • How hybrid big-data plus in-memory systems are being utilized to address the various new analytic and IT-architecture problems associated with this challenge
  • How to combine large-scale distributed analytics capabilities with comprehensive server- and in-memory-based advanced analytics
  • How to deliver actionable interactive results through intelligent visualizations.

Speakers:

Mike Alperin, Manufacturing Industry Consultant

Steven Hillion, Sr. Director Data Science

웨비나 보기

등록을 계속하기 위해 TIBCO Software Inc. 및 TIBCO 계열사(총칭 “TIBCO”)는 귀하로부터 아래의 개인 정보를 수집해야 합니다. 이 TIBCO 리소스에 등록하면 TIBCO가 이 데이터를 처리하고 리소스 관련 정보로 이메일, 전화 및/또는 소셜 미디어를 통해 귀하에게 연락하는 데 동의하는 것으로 간주됩니다.

TIBCO는 또한 귀하가 관심을 가질 수 있는 제품 및 서비스와 관련하여 이메일, 전화 및/또는 소셜 미디어를 통해 귀하에게 연락하고자 합니다. 아래에 기재된 귀하의 개인 정보를 사용하는 데 대해 동의를 표해 주십시오.

TIBCO는 제품 및 서비스와 관련하여 저에게 연락할 수 있습니다.