Addressing Process Control Challenges in Big and Wide Data Environments

A number of unique issues must be solved when analyzing big and very high-dimensional data and/or big data with discrete variables of very high cardinality:

  • You must satisfy performance requirements for effective process monitoring and anomaly detection, predictive analytics and fault classification, and root-cause analysis.
  • Discrete predictor variables of high cardinality (for example, codes identifying thousands of tools) must be pre-processed and converted to fewer or to single-column continuous derived variables.
  • Initial feature selection methods must then be applied to derive from the very large numbers of predictor variables a smaller subset of “important” predictors. These are then related to important process outcomes using machine learning algorithms.
  • Results must be delivered to an interactive visualization platform that enables actionable insights for engineers and process stakeholders.

Download the whitepaper to learn about an architecture developed by TIBCO for a large semiconductor manufacturer for efficiently implementing these steps, in addition to real-world analytics use cases typically encountered in this industry.

Descargue El White Paper

Para proceder a su registro, TIBCO Software Inc. y TIBCO affiliates (“TIBCO”) necesitan recopilar sus datos personales que aparecen a continuación. Al registrarse en TIBCO recurso está autorizando que TIBCO procerese estos datos y se ponga en contacto con usted por correo electrónico, teléfono y/o redes sociales con recurso- información relacionada.

TIBCO desearía ponerse en contacto con usted por correo electrónico, teléfono y/o redes sociales con respecto a los productos y/o servicios que puedan ser de su interés. Por favor, indique su consentimiento al uso de sus datos personales a continuación.

TIBCO podrá contactar conmigo con respecto a sus productos y servicios.